2 research outputs found

    Series Elastic Actuator: Design, Analysis and Comparison

    Get PDF
    In general, actuators are built to be as stiff as possible to increase the bandwidth. When a robot works in a structured environment, its automation is easier than in a non-structured environment in which case its modeling is quite difficult and presents a high computational effort. To overcome this difficulty, series elastic actuator (SEA) has been applied in compliant robotic grasping. Unlike rigid actuators, a SEA contains an elastic element in series with the mechanical energy source. Such an elastic element gives SEAs tolerance to impact loads, low mechanical output impedance, passive mechanical energy storage, and increased peak power output. The spring has to be able to support the loads, but it cannot be too stiff; otherwise, system impedance will be high. This chapter describes a comparison between two types of SEA, an electric series elastic actuator (ESEA) and a hydraulic series elastic actuator (HSEA), for four-legged dynamic robot application. The parameters employed in the comparison are bandwidth, output impedance, time response, power density, and dynamic range. The results indicate that HSEA is a better actuator than ESEA for a weight carrying four-legged dynamic robot because of its higher power density and dynamic ratio with desirable output impedance, time response, and bandwidth

    Transient Thermal Analysis of a Magnetorheological Knee for Prostheses and Exoskeletons during Over-Ground Walking

    Get PDF
    Proper knee movement is essential for accomplishing the mobility daily tasks such as walking, get up from a chair and going up and down stairs. Although the technological advances in active knee actuators for prostheses and exoskeletons to help impaired people in the last decade, they still present several usage limitations such as overweight or limited mechanical power and torque. To address such limitations, we developed the Active Magnetorheological Knee (AMRK) that comprises a Motor Unit (MU), which is a motor-reducer (EC motor and Harmonic Drive) and a MR clutch, that works in parallel to a magnetorheological (MR) brake. Magnetorheological fluids, employed in the MR clutch and brake, are smart materials that have their rheological properties controlled by an induced magnetic field and have been used for different purposes. With this configuration the actuator can work as a motor, clutch or brake and can perform similar movements than a healthy knee. However, the stability, control, and life of magnetorheological fluids critically depend on the working temperature. By reaching a certain temperature limit, the fluid additives quickly deteriorate, leading to irreversible changes of the MR fluid. In this study, we perform a transient thermal analysis of the AMRK, when it is used for walking over-ground, to access possible fluid degradation and user鈥檚 discomfort due overheating. The resulting shear stress in the MR clutch and brake generates heat, increasing the fluid temperature during the operation. However, to avoid overheating, we proposed a mode of operation for over-ground walking aiming to minimize the heat generation on the MR clutch and brake. Other heat sources inside the actuator are the coils, which generate the magnetic fields for the MR fluid, bearings, EC motor and harmonic drive. Results show that the MR fluid of the brake can reach up to 31掳C after a 6.0聽km walk, so the AMRK can be used for the proposed function without risks of fluid degradation or discomfort for the user
    corecore